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Abstract. We implement and further refine the recently proposed method at Kashlinsky et al. (2001) (KHA) for a time effi-
cient extraction of the power spectrum from future cosmic microwave background (CMB) maps. The method is based on the
clustering properties of peaks and troughs of the Gaussian CMB sky. The procedure takes only1

2[ f (ν)]2N2 steps wheref (ν) is
the fraction of pixels with|δT | ≥ ν standard deviations in the map ofN pixels. We use the new statistic introduced in KHA,
ξν, which characterizes spatial clustering of the CMB sky peaks of progressively increasing thresholds. The tiny fraction of the
remaining pixels (peaks and troughs) contains the required information on the CMB power spectrum of the entire map. The
thresholdν is the only parameter that determines the accuracy of the final spectrum. We performed detailed numerical simula-
tions for parameters of the two-year WMAP and Planck CMB sky data including cosmological signal, inhomogeneous noise
and foreground residuals. In all cases we find that the method can recover the power spectrum out to the Nyquist scale of the
experiment channel. We discuss how the error bars scale withν allowing to decide between accuracy and speed. The method
can determine with significant accuracy the CMB power spectrum from the upcoming CMB maps in only∼(10−5 − 10−3) × N2

operations.
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1. Introduction

The sub-degree structure of the CMB probes linear scales that
were inside the horizon at the last scattering epoch. The CMB
fluctuations on these scales carry a signature of causal pro-
cesses during the last scattering and thereby provide a very
important constraint on the physics of the early Universe and
the models for structure formation. The most popular of these
models is the cold dark matter (CDM) set of models based
on the inflationary paradigm for the evolution of the early
Universe. The models are very appealing, not only because of
their relative simplicity, but also because they provide a clear-
cut set of predictions that can be verified by observations. One
(and perhaps the most critical) of these predictions is the sub-
degree structure of the CMB anisotropies. In the framework of
CDM models with adiabatic density fluctuations the structure
of the CMB power spectrum reflects the linear physics of sound
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waves and initial density perturbations. While on scales outside
the horizon at de-coupling the CMB field preserves the initial
power spectrum, on sub-degree scales the interaction between
the photon fluid and matter leads to a series of acoustic peaks.
The relative height, width and spacing of these peaks depend
on a final set of the cosmological parameters (Ωtotal,ΩΛ,Ωb, h)
and also serve to validate the cosmological CDM paradigm (see
Hu & Dodelson 2002 for a recent review). It is then impor-
tant to measure the sub-degree structure of the CMB with high
accuracy.

After its first year of operation, the WMAP experiment
has measured the Cosmic Microwave Background (hereafter
CMB) at five different frequencies with the maximal angu-
lar resolution of∼0.21◦ and sensitivity close to 175µK per
7′ pixel, (Bennet et al. 2003a). With these sensitivity and an-
gular resolution levels, the cosmological parameters asΩ0,
ΩΛ, Ωbaryon, H0, n, τreio were determined with high accuracy
(Spergel et al. 2003). These measurements should be further
improved with the planned ESA’s mission Planck, where maps
will contain up to 107 pixels and extend to higher angular
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resolution. Angular resolution and noise are both important for
determining the cosmological parameters from the CMB.

A major challenge to understanding current and future
CMB measurements is to find an efficient algorithm that can
reduce these enormous datasets:N ' 105 pixels in balloon ex-
periments,'3 × 106 for WMAP, to '5 × 107 for the Planck
HFI data. (For comparison the COBE DMR data analysis was
based on only 4144 pixels). Traditional methods require in-
verting the covariance matrix and need∼N3 operations making
them unfeasible for the current generation of computers. Thus
alternatives have been developed for estimating the CMB mul-
tipoles from Gaussian sky maps: Tegmark (1997) proposed a
least variance method that yieldsCl ’s directly from the temper-
ature map inO(N2) operations, while Oh et al. (1999, hereafter
OSH) perform an iterative maximization of the likelihood of
the temperature map, also inO(N2) operations. The first year
WMAP results were analyzed with the OSH method (Hinshaw
et al. 2003). Bond et al. (2000) and Wandelt et al. (2001) con-
centrate on the statistics ofCl ’s, once the temperature map has
been Fourier transformed. Hivon et al. (2002) studied the likeli-
hood of the power spectrum as obtained by direct Fast Fourier
Transform of the available portion of the sky. Though it re-
quiresO(N3/2 ln N) operations, the accuracy of their results de-
pends on the fraction and geometry of the sky covered. A dif-
ferent approach consists in computing the correlation function
directly from the data inO(N2) operations. Smoot et al. (1992)
used this type of analysis for the first year release of the COBE
data. More recently, Szapudi et al. (2001a,b) have developed it
for mega-pixel CMB data sets. The last contribution in this field
comes from Penn (2003), who applies existing (Padmanabhan
et al. 2002) iterative algorithms on CMB data analysis, and
manages to estimate to power spectra inO(N log N) opera-
tions.

A different method to compute the CMB power spectrum
in a fast and accurate manner was proposed by us (Kashlinsky
et al. 2001, hereafter KHA). The method exploits Gaussian
properties of the CMB and noise fields and uses high peaks
(and troughs) of the CMB field whose abundance is much
smaller than the total number of pixels,N, and whose correla-
tion properties are strongly amplified in a way that depends on
the underlying power spectrum. This simultaneously achieves
two important goals: reducing the number of computational
steps for analysis and the good accuracy of the measured pa-
rameters. KHA have shown that the tiny fraction of the remain-
ing pixels (peaks and troughs) contains the required informa-
tion on the CMB power spectrum in the small scales. The peaks
also trace, by default, the pixels with high signal-to-noise ratio
and keep most of the information about the power spectrum
of the signal. Although this method may not provide as accu-
rate results as other more time consumings methods, it pro-
vides a new, non-standard and independent tool to unveil the
sub-degree structure of the CMB.

In this paper we present detailed numerical simulations
with the application of the KHA method to WMAP and Planck
datasets in the presence of realistic components, such as inho-
mogeneous noise and non-Gaussian features expected from the
Galactic foreground residuals. We show that with this method
we can determine the CMB power spectrum outside the beam

(l ' 640 for WMAP and higher for Planck) in only<10−3N2

operations. We show that for the projected two-year WMAP
noise levels our error bars at eachl are, on average, compara-
ble to OSH, but have larger correlations which may be a small
price to pay for the significantly shorter computational time.
For both WMAP and Planck parameters the KHA method is
also faster than the direct computation of the CMB power spec-
trum in O(N3/2 logN) ∼ N1.61 steps.

The structure of this paper is as follows: in Sect. 2 we
briefly review the KHA formalism and in Sect. 3 we discuss
its numerical implementation. Section 4 deals with application
of the method to both idealized and realistic WMAP data. We
show there that the method is immune to noise inhomogeneities
and non-Gaussian features of Galactic foregrounds. Section 5
follows with results for application of the KHA method to
Planck and in Sect. 6 we present our main conclusions.

2. Mathematical formalism: An overview

For completeness we give a brief overview of the KHA method;
more details are in KHA.

The CMB sky is expected to be highly Gaussian (Komatsu
et al. 2003) and this property, Eq. (1) below, is also widely
used in standard maximum likelihood methods. For a Gaussian
ensemble ofN data points (e.g. pixels) describing the CMB
dataδ ≡ T − 〈T〉 one will find a fractionf (ν) = erfc(ν/

√
2)

with |δ| ≥ νσ, whereσ2 = 〈δ2〉 is the variance of the field
and erfc is the complementary error function. The fraction of
peaks,f (ν), is a rapidly decreasing function forν >∼ 1 and is
e.g. f (ν) = (4.5, 1, 0.1)× 10−2 for ν = (2, 2.5, 3) respectively.
The joint probability density of finding two pixels within dδ1,2
of δ1,2 and separated by the angular distanceθ is given by the
bivariate Gaussian:

p(δ1, δ2) =
1

2π
√||C|| exp(−1

2
δ · C−1 · δ) (1)

where C is the covariance matrix of the temperature field.
We model the temperature correlation function (ormatrix, if
defined on a set of pixels) as

C(θi j ) = CCMB(θi j ) + 〈NiN j〉 (2)

whereCCMB(θi j ) and〈NiN j〉 are the CMB and the noise cor-
relation matrices, respectively. We further define the total vari-
ance of the map asC0 ≡ CCMB(0)+ 〈N2〉. The case of inhomo-
geneous noise, i.e., noise whose variance varies across the sky,
will be discussed in Sect. 4.2. Note that the power spectrum
of the map is nothing but the Legendre transform ofC(θ), (see
Eq. (5) below).

The distribution of peaks of a Gaussian field is strongly
clustered (Rice 1954; Kaiser 1984; Jensen & Szalay 1986;
Bardeen et al. 1986; Kashlinsky 1987). Their angular cluster-
ing can be characterized by the 2-point correlation function,ξ,
describing the excess probability of finding two events at the
given separation. The correlation function of such regions is:

ξν(θ) =
2
∫ ∞
νσ

∫ ∞
νσ

[p(δ1, δ2) + p(−δ1, δ2)]dδ1dδ2

[2
∫ ∞
νσ

p(δ)dδ]2
− 1

= Aν

(
C
C0

)
(3)
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whereAν is evaluated in detail in KHA to be:

Aν(x) =
1

H2
−1( ν√

2
)

∞∑
k=1

x2k

22k(2k)!
H2

2k−1

(
ν√
2

)
· (4)

Here Hn(x) = (−)n exp(x2)dn/dxn exp(−x2) is the Hermite

polynomial;H−1(x) ≡
√
π

2 exp(x2)erfc(x).
At each angular scale the value ofξν for everyν is deter-

mined uniquely byC at the same angular scale. In the limit of
the entire map (ν = 0) our statistic isξν = 0 and our method
becomes meaningless; the new statistic has meaning only for
sufficiently highν. One should distinguish between the 2-point
correlation function,ξ, we directly determine from the maps,
and the commonly used statistics in CMB studies, the temper-
ature correlation function,C.

KHA thus suggested the following procedure to determine
the power spectrum of CMB in only' f 2(ν)N2 � N2 opera-
tions:

1. Determine the variance of the CMB temperature,C0, from
the data inN operations.

2. Choose sufficiently high value ofν when f (ν) is small but
at the same time enough pixels are left in the map for robust
measurement ofξν(θ).

3. Determineξν(θ) in [ f (ν)]2N2 operations.
4. Finally, solve the equationAν(C/C0) = ξν(θ) to ob-

tainCCMB(θ) and from itCl . This last step assumes that the
experimental noise correlation function〈NiN j〉 has been
properly determined, at least in the set of pixels selected
in the analysis, so that it can be subtracted from the total
correlation functionC(θi j ).

Formally speaking this procedure would require1
2[ f (ν)]2N2

operations because of the symmetry in counting pairs. For sim-
plicity we will be referring to this asO( f 2N2) method implying
a gain factor of [f (ν)]2 compared to otherO(N2) methods.

3. Numerical implementation

3.1. Modeling the CMB sky

Maps of the CMB sky were generated using the hierarchical
equal area isolatitude pixelization of the celestial sphere imple-
mented in HEALPix1. Pixels have equal area and are arranged
in “constant latitude rings”. Maps can be constructed with vary-
ing resolution, the number of pixels given byN = 12× N2

side,
beingNside the number of times in which each side of a pixel
will be divided in two, starting from a given initial config-
uration. For a value ofNside of 512, one generates a map
of 3 145 728 pixels of size of seven arcminutes. In the case
of PLANCK, we usedNside = 1024 or 12 582 912 pixels of
3.5 arcmin size. The CMB spectrum was obtained using the
CMBFAST code (Seljak & Zaldarriaga 1996).

For WMAP and PLANCK, we performed two types of
simulations including: (1) cosmological signal plus white
noise, and (2) cosmological signal, foregrounds and inho-
mogeneous white noise. We chose three different thresholds:
ν = 2.0, 2.27, 2.525 for WMAP andν = 2.55, 2.78, 3.0 for

1 HEALPix’s URL site:http://www.eso.org/science/
healpix/

Fig. 1. a)ξν=2 for the SCDM model with a Harrison-Zel’dovich power
spectrum, obtained from a single realization of WMAP 94GHz chan-
nel. Solid line: theoretical estimate (Eq. (3)). Dots: raw data ofξν=2

evaluated at 31 415 angular bins distributed uniformly fromθ = 0◦

to 180◦. Dashed line: result of filtering the raw data with a Gaussian
of 4′ width at the roots of the Legendre polynomial of order 800.
b) The shaded area represents the 1σ optimal variance error bar
(Eq (6)) for the 94 GHz WMAP channel. Dashed and solid lines have
the same meaning as ina).

Planck. At each threshold, the pixels selected are (on aver-
age) f (ν)N and their number doubles with decreasing thresh-
old. The thresholds for WMAP and Planck were chosen such
that they select the same number of pixels in both experiments.
In this way, we can analyze the effect of pixel number on the
accuracy of the method, i.e., we can estimate how the multipole
error bars scale with threshold.

From the peak spatial distribution,ξν(θ) was computed on
a grid of 31 415 equally spaced bins. The power spectrum is
computed using a Gauss-Legendre integration:

Cl = 2π
∫ π

0
dθ sinθC(θ)Pl(cosθ). (5)

Accurate integration requires the evaluation ofC(θ) at the roots
of the Legendre polynomial out to a maximum orderlmax (Press
et al. 1992) and this property was used by Szapudi et al.
(2001a,b) and KHA. The value oflmax = 800 was chosen as
a compromise between the beam scale and the pixel angular
scale, in order to prevent the first root of the Legendre polyno-
mial from being within the pixel size where there is no informa-
tion onξν(θ). Prior to inverting Eq. (3)ξν(θ) was smoothed us-
ing a Gaussian of width 4′ centered on the roots of the Legendre
polynomials. We verified that other average schemes lead to es-
sentially identical results.

Figure 1a showsξν=2(θ) for a SCDM model, withΩtotal = 1,
ΩΛ = 0, Ωb = 0.04, H0 = 55 km s−1 Mpc and scalar pertur-
bation spectral indexnS = 1. The solid line corresponds to
the theoretical prediction and the dashed line is a smooth av-
erage obtained from the data. The agreement is very good out
to θ ∼ 10◦, allowing an accurate reconstruction of the power
spectrum in the range of interest:l >∼ 30.
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3.2. Accuracy of ξ and correlations

There are numerous ways to estimateξν(θ) from the data, each
way coming with its own uncertainty and systematics. Ideally,
the uncertainty inξν(θ) should reach 1/

√
Npairs but in practice

systematic and other effects become dominant (Peebles 1980).
Because the KHA method involves a complex and non-linear
algorithm for invertingCl ’s from ξν(θ), the accuracy of the re-
sultant CMB power spectrum may depend sensitively on the
details, uncertainties and correlations of a particular estimator
of ξν.

The ultimate accuracy with which the CMB power spec-
trum can be determined at eachl is given by the so called
optimal variance containing both the cosmic variance and the
instrument noise (Knox 1995):

σOV(l) =

√
2

(2l + 1) fsky

Cl +
4π〈N2〉B−2

l

N

 · (6)

In this equation,N is the number of pixels,fsky is the frac-
tion of the sky covered by the experiment andBl is the window
function due to the finite beam resolution. This uncertainty also
limits the accuracy with which one can determine the correla-
tion functionsC andξ. The latter are given by:

σ2
C(θ) =

∑
l

∣∣∣∣∣∂C(θ)
∂Cl

∣∣∣∣∣2σ2
OV(l), σ2

ξν(θ)
=

∣∣∣∣∣∂ξν(θ)∂C(θ)

∣∣∣∣∣2σ2
C(θ). (7)

The shaded region in Fig. 1 shows an example of the optimal
variance uncertainty inξν=2(θ). (Note that it is a function ofν).

In KHA, we evaluatedξν as the ratio of number of peak
pairs at a given angular scale with respect to a poissonian
catalog:

ξ̂ν(θ) = DD/RR− 1. (8)

At each angular separation,DD is the number of pairs of peaks
andRRthe number of pairs off (ν)N points randomly located
on the sphere Landy & Szalay (1993) argue that this estimator
is neither optimal nor unbiased. They proposed a more accurate
estimator defined by:

ξ̃ν(θ) = (DD + RR− 2DR)/RR, (9)

with DR is the number of pairs given a cross-correlation be-
tween thef (ν)N peaks of the CMB map and the same number
of points Poisson distributed on the sky. We performed sim-
ulations for WMAP as described in Sect. 4 and computedξν
using both estimators. We found that, for the range of interest
(θ < 10◦), both estimators show scatter equally close to Eq. (7).
Hence, in what follows we shall use Eq. (8) to be consistent
with KHA.

In Fig. 1b we plot the 1-σ errors inξν=2 for the 94 GHz
WMAP channel given by the noise and cosmic variances. The
smooth average obtained from the data (dashed line) is in good
agreement with theoretical value. Therefore, we will expect
that the radiation power spectrum obtained fromξν=2 as de-
scribed below will be very close to that of the input model.

The sampling variance associated with the low number of
pairs – compared with methods based on the correlation func-
tion – is much smaller that the cosmic variance onξν. Figure 2

Fig. 2. The ratio of the optimal variance uncertainty onξν to the sta-
tistical uncertainty, 1/

√
Npairs plotted vs the separation angle for the

resolution of the WMAP 94GHz channel. The solid line corresponds
to ν = 3, dotted toν = 2 and dashes toν = 1.5.

shows
√

Npairsσξ,OV which is the ratio of the optimal variance
uncertainty onξ to the statistical uncertainty, 1/

√
Npairs. The

lines correspond to variousν = 1.5 (dashes), 2 (dots) and 3
(solid line). The ratio was computed for WMAP number of
pixels. The plot shows that for any mega-pixel CMB map the
method can determine the new statistic,ξν, out to the angles of
interest optimally even for threshold as low asν = 1.5. This
is the reason why our results are not sensitive to the particular
estimator used in calculatingξν.

At θ >∼ 10◦−20◦ the value ofξν(θ) is small and its value
becomes dominated by shot noise. Hence, we restrict the anal-
ysis toθ < 10◦−20◦ by introducing a taper function that cuts
out the contribution of the correlation function forθ >∼ 10◦.
As a result (a) we will not recover very accurately multipoles
belowl ' 30 and (b) tapering will introduce additional correla-
tions among the differentCl ’s. The first limitation is irrelevant,
since one can always degrade the map to smaller resolution
and apply standard techniques to recover the power spectrum
at l ≤ 20−40. The second limitation is common to all methods
that compute the power spectrum by means of the correlation
function or in the presence of Galactic (and other) cut. The in-
trinsic multipoles need to be de-convolved from the tapering
function, i.e., ifCintrinsic

l are the multipoles of the sky radiation
power spectrum, andCl are obtained using Eq. (5), then

Cl =
∑

l′
Cintrinsic

l′ Fl−l′ (10)

whereFl is the Legendre transform of the tapering functionF.
Figure 3 shows the Legendre transform of the tapering

function as function of∆l ≡ l − l′ for Gaussian and top-hat
tapering. The advantage of Gaussian tapering is quite obvious
as it leads to significantly less prominent side-lobes. Hence, we
adopted it in our computations. As the figure shows, it would
lead to FWHM correlation width of only∆l ∼ (a few) for taper-
ing angles<∼10◦. Correlations on theCl ’s would be dominated
by tapering and correlated errors onξν.
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Fig. 3. Legendre transform of the tapering function (Eq. (10)) plotted
vs.∆l = l − l′. Left panel corresponds to Gaussian tapering,F(θ) ∝
exp(−θ2/θ2t ) and the right panel to the top hat tapering,F(θ) = 1 for
θ ≤ θt and zero otherwise. Dashed, dotted and solid lines correspond
to θt = 18◦,12◦, 8◦ respectively.

4. Application to WMAP

WMAP is observing at 5 frequency bands: 23, 33, 41, 61, and
94 GHz, (Jarosik et al. 2003; Bennett et al. 2003a). The beam
response at each band are given by a gain pattern, G, which is
asymmetric and non-Gaussian. From the solid angle beam, one
can always define FWHMs, which, for increasing frequency
channels, are equal to 0.82, 0.62, 0.49, 0.33 & 0.21 degrees,
(Page et al. 2003). The sky maps based on the full two-years
of data are expected to have anrms noise of'35 µK per
0.3◦ × 0.3◦ pixel. By design, the noise will be essentially un-
correlated from pixel to pixel and it is expected to be highly
Gaussian (Hinshaw 2000; Hinshaw et al. 2003). Due to the sky
scanning strategy, the noise is reasonably uniform across the
sky, except at the small regions near the ecliptic poles and at
ecliptic latitude∼45◦ where the sensitivity will be somewhat
higher. The WMAP radiometers produce raw temperature mea-
surements that are the differences between two points on the
sky separated∼140◦. Since a given pixeli is observed with up
to 1000 different pixelsj, the covariance between any given
pair of pixels (i, j) is much less than 1% of the variance of
pixel i. The noise covariance in the final sky maps will, by de-
sign, be very nearly diagonal.

4.1. Homogeneous noise results

First, we performed a set of 500 simulations forν =
(2, 2.27, 2.525) including only cosmological signal and white
noise. For each simulation, we computed the correlation func-
tion and the power spectrum. Figure 4 summarizes the results
for the thresholdν = 2. In panel (a) the dotted line shows the
power spectrum recovered from a single simulation, whereas
the solid line gives the input power spectrum. Tapering an-
gle wasθt = 12◦. In (b), we show the average results for
500 realizations: the solid and dashed lines represent the in-
put model and the average power spectrum of the 500 simu-
lations, respectively. The shaded area shows the 1-σ error bar
region for eachCl and the dashed lines show the optimal vari-
ance. Our method traces the acoustic peaks up to the beam
scale,lbeam ∼ 640. Its accuracy is roughly similar to the op-
timal varianceσOV for l ≤ 300. The spectrum of Fig. 4a has
been obtained in 10−3N2 operations, using a taper window of

Fig. 4. Radiation power spectrum forν = 2 and different taper angles.
In all panels the solid line shows the input power spectrum.a) Dotted
line: power spectrum obtained from a single simulation withθt = 12◦.
b) Dotted line: power spectrum obtained from averaging 500 simu-
lations, shaded area: 1σ error region obtained from the same sim-
ulations. The dashed lines limit the 1σ optimal variance error bars
(Eq. (6)).c) The same as ina) but for θt = 8◦ (solid line) andθt = 18◦

dashed line.d) solid and dashed lines as inb); the symbols displayed
the band averaged power spectra with bandwidth∆l = 40 of the spec-
tra plotted inc): diamonds correspond toθt = 8◦ and triangles to
θt = 18◦.

12◦ FWHM. The accuracy can be improved by lowering the
thresholdν and hence increasing the computational time.

To see the effect of tapering, in Fig. 4c we plot the power
spectra obtained for two different tapering angles for the same
simulation as in Fig. 4a. The solid line corresponds toθt = 8◦
while the dashed line toθt = 18◦. Increasing the tapering angle
leads to larger oscillations, but also decreases the correlations
between differentl. In Fig. 4d we plot the band power aver-
age of the previous spectra: diamonds correspond to the taper-
ing angle of 8◦ and triangles to 18◦. The solid line is the input
model and the dashed lines correspond to the optimal variance
error bars as in (b). As expected, both results are almost identi-
cal since all the information at highl’s is contained at angular
scales smaller than 1◦.

The correlation matrix,Cl,l′ , among different multipoles is
given by:

Cl,l′ =
〈δClδCl′ 〉√
〈δC2

l 〉〈δC2
l′ 〉
, (11)

with δCl = Cl − 〈Cl〉. The correlation coefficient matrix has
been computed after using a Gaussian taper functionF(θ) =
exp−(θ/θt)2. It is highly diagonal with FWHM width∆l ∼ 10
for θt = 8◦, independentlyof the value of the multipolel. At
∆l ∼ 20 the correlation drops to the level of∼5%, indepen-
dently ofν. Outside the central diagonal strip the residual cor-
relations are due to shot noise from the finite number of sim-
ulations. For consistency, we repeated the analysis with only
125 simulations. The width of the diagonal remained the same,
but the off-diagonal terms grew by a factor of two, consistent
with Poisson statistics.
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Fig. 5. Comparison of the error bars of OSH and KHA methods for
a CMB map as seen by the 94 GHz channel of WMAP. We plot the
ratio (σCl )KHA/(σCl )OSH. The uncertaintiesσCl ’s were computed for
raw multipole estimatesCl , without averaging.

For larger/smaller tapering angles, the correlation scale∆l
will be smaller/larger but, as demonstrated in Fig. 4d, it will not
change our estimate of the power spectrum. We also checked
that our results did not change if we use the correlation func-
tion from the coarser (and computationally tractable) map from
θ = 10◦ out to 180◦ instead of tapering. The correlation on the
final Cl ’s are dominated by the correlated errors inξν at small
angles.

In Fig. 5 we compare the accuracy of our method for
WMAP andν = 2 with that of OSH. We compute the ratio
of the uncertainties in the multipoles recovered by both meth-
ods. Our method gives a comparable precision to that of OSH
but requires much fewer operations. On the other hand, it gives
fewer independent data points. In direct methods, such as OSH,
the necessary Galactic cut leads toCl ’s that are correlated on
scales of∆l ' 2−3, while our method gives a correlation length
of about∆l ∼ 10.

In Fig. 6 we show the variation of the error bar with band-
width for the multipole atl = 200. Solid, dotted and dashed
lines correspond toν = 2.5, 2.27 and 2, respectively. Due to the
presence of this correlation among the multipole estimates, this
σCl ∼ (∆l)−1/2 behavior is obtained for∆l >∼ 10, the correlation
scale introduced by our method.

In Fig. 7 we showσCl at l = 200, 300, 400, 500 for the three
thresholds. Smaller error bars correspond to smaller thresholds,
i.e., to larger number of peaks. A power-law fit using all multi-
poles gives a power law behavior of the formσCl ∝ Nβpeaks, with
β = −0.405±0.016. These relations can be used to estimate the
amplitude of the error bar attached to each multipole for a wide
range of values ofν and∆l. In particular, it can be used to find
what values ofν and∆l are necessary to achieve a given degree
of accuracy in the power spectra and the time required in the
computation.

Fig. 6. Scaling of band power error barσCl with bandwidth∆l. Solid,
dotted and dashed lines correspond toν = 2.5,2.27 and 2, respectively.

Fig. 7. Band power error bars as a function of the number of pix-
els used to compute the radiation power spectrum are shown for four
values of l. Diamonds, triangles and squares correspond to∆l =
30, 50,70, respectively.

We have shown that for a given experiment the accuracy of
theCl ’s computed spectrum depends mainly on one parameter:
the peak threshold allowing to choose between larger accuracy
or speed.

4.2. Including foregrounds and realistic noise

We now generalize the method to include realistic foreground
emission and inhomogeneous noise and will demonstrate that
also in this case the KHA method gives similar estimates of the
CMB power spectrum.
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Fig. 8. The histograms of the 94 GHz foreground emission with
WMAP resolution. Solid, dotted and dashed lines correspond to
Galactic cutbcut = 5,10, 20 degrees, respectively.

4.2.1. Foregrounds

After the first year data release, the WMAP team made pub-
lic foreground maps built after combining the five different
frequency maps provided by the instrument, (Bennett et al.
2003b). These foreground maps were constructed after apply-
ing a Maximum Entropy Method using existing templates as
priors, and the resulting model for galactic emission matches
the observed emission to<1%. Using this model for Galactic
emission, we get that with the fiducial value of 20% for the
amplitude of the foreground residuals aboveb = 10◦, they are
much smaller than the intrinsic CMB temperature fluctuations
associated with peaks (δT >∼ 200µK for ν = 2).

To model the effect of foregrounds, we used simulated
maps provided to us earlier by G. Hinshaw of the WMAP
science team (2002, private communication). These were pro-
duced by combining the Haslam 408 MHz map and the
Schlegel et al. (1988, hereafter SFD) IRAS/DIRBE 100 µm
dust map. The Haslam map was used as the template for syn-
chrotron emission and the SFD map as the template for dust
and free-free. These maps were scaled to microwave frequen-
cies using the COBE DMR-based fits of these templates (with
7 degree resolution). The frequency by frequency fit results are
in Table 1 of Kogut et al. (1996). In detail, the Haslam map was
scaled using a power law indexαsyn = −3. The SFD free-free
map was scaled usingαff = −2.15 and the SFD dust model was
scaled using an indexαdust= 2.0. This model is known to over-
predict the plane emission at DMR resolution, thus it is likely
to be conservative. In the foreground maps, we did not include
point sources. Sokasian et al. (1999) have compiled and ana-
lyzed the available extra-galactic point source data and have
concluded that such sources will contribute negligibly to the
angular power spectrum at 94 GHz forl < 800.

Figure 8 shows the histogram of foreground contributions
to the WMAP 94GHz channel for 3 values of Galactic cut: the
solid, dotted and dashed lines correspond to|b|cut = 5◦, 10◦
and 20◦, respectively. For comparison atν = 2 the value CMB
contribution to the remaining pixels will be∼200µK. Clearly,
foregrounds are not likely to significantly affect the method.

Fig. 9. Histograms of pixel noise variance for the WMAP 94 GHz
channel with pixels size of 7 arcmin.

4.2.2. Noise model

Our statisticξν has been worked out for homogeneous Gaussian
fields. The inversion ofξν(C(θ)/C0) into the correlation func-
tion C(θ) is accurate provided that signal and noise correla-
tion functions are uniform across the sky. For most experi-
ments this is not the case as the sky coverage is not homo-
geneous and the noise variance changes with location. For
this more realistic case we adopt the following strategy: if
the noise variance〈NiNi〉 changes according to the number
of times a pixel has been observed (〈NiNi〉 ∼ t−1/2

observ), pixel i
will be selected as peak above a thresholdν if it verifies
|δTi | >= ν(CCMB(0) + 〈NiNi〉)1/2, i.e., we take into account the
local noise variation. In the expression,CCMB(0) is the vari-
ance of the cosmological signal. We apply this formalism to
the noise model of the WMAP two-year scanning strategy. This
model gives the number of observations (Nobs) in each pixel at
the end of the second mission year. Figure 9 shows the distribu-
tion of the rms noise distribution for WMAP 94 GHz channel,
for 7 arcmin-sized pixels. In the figure, the noise average is√〈NiNi〉full sky ' 97µK per pixel.

Figure 10 shows that this gives similar results as for homo-
geneous noise. The thick solid line corresponds to the theoreti-
cal estimate ofξν=2 according to Eq. (3). For a fixed cosmolog-
ical signal, if we add homogeneous noise to a CMB map, the
dot-dashed line will be the numerical estimate, like in Fig. 1.
The thin solid line gives the estimate ofξν=2 assuming the noise
is homogeneous when it is not, while the long-dashed line gives
the estimate when the pixels have been selected according to
the criterion defined in the previous paragraph. The latter result
is comparable to the case of homogeneous noise and, in this
sense, this procedure gives an optimal estimator.

4.2.3. Results

We performed 150 simulations of WMAP data using the
SCDM model, with inhomogeneous noise and foreground
residuals. We choose three different galactic cuts and two dif-
ferent amplitudes for the foreground residuals: 10% and 20%
amplitude of the original foreground data at 94 GHz. In the first
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Fig. 10. Thick solid and dot-dashed lines:ξν=2 of the input model
and estimator when the noise is homogeneous, as in Fig. 1. When the
noise is inhomogeneous, the thin solid line givesξν=2 obtained when
we apply the same method as if the noise were homogeneous. The
long-dashed line corresponds to the case when we take into account
the variable amplitude of the noise and select pixels accordingly (see
text). The shaded area is the 1-sigma optimal variance error bars.

Fig. 11. Radiation power spectra obtained from maps containing inho-
mogeneous noise and foreground residuals. The correlation function
was computed using all pixels aboveν = 2. As in Fig. 4, solid lines
correspond to the input power spectrum. The dotted lines give the av-
erage of 150 simulations. The dashed lines show the 1-σ confidence
level given by the optimal variance of Eq. (6). The shaded area corre-
sponds to the 1-σ error region obtained from the simulations.

case, we performed simulations with a Galactic cut at|b| = 5◦
and 10◦ and for the 20% residuals we imposed a cut at|b| = 20◦.
We have checked that these models give a foreground residual
level comparable to the actual contribution found in the data by
Bennett et al. (2003c).

In Fig. 11 we show the results of 150 simulations. As in
Fig. 4, the dotted lines shows the mean power spectrum of all
the simulations, while the solid line shows the input model.
Shaded areas give the 1-σ confidence level and dashed lines
the optimal variance 1-σ error bars (see Eq. (6)). In the whole
range, the error bars were almost identical (less than 5% in-
crease) to the case with no foregrounds and homogeneous
noise. The correlations inl-space are practically the same as
before (∆l ' 10). The deviations of the mean from the input
model are from the smaller number of simulations.

To quantify the amplitude of the non-Gaussian com-
ponents, we computed the skewness and kurtosis of our

simulations. The skewness and kurtosis are defined (cf. Press
et al. 1992) asσ3 = 〈(δT/σ2)3〉, σ4 = 〈(δT/σ2)4〉 − 3, re-
spectively, withσ2 being the variance of the data. In our case,
the non-Gaussian signal is dominated by the foreground resid-
uals. We computed the skewness and kurtosis for a randomly
selected map of the previous set of simulations. For a Galactic
cut at 10◦ and 10% foreground residuals amplitude, the values
found wereσ3 = 0.12 andσ4 = 1.2. For comparison, for the
same CMB map re-simulated with a realistic noise component,
galactic cut and no foregrounds, the values wereσ3 = 0.02 and
σ4 = −0.03.

To conclude, the addition of a non-Gaussian signal (the
foreground residuals) and inhomogeneous noise does not affect
significantly the performance of the method. The reason that
the introduction of Galactic foregrounds produces only small
variations in the results is at the very core of our procedure:
with the new KHA statistic, Eq. (3) we select regions with high
S/N ratio, the peaks, and small departures from Gaussianity
neither degrades the quality of our subset of data, nor intro-
duces additional correlations.

The results presented in Fig. 11 would improve for lower
thresholds. As the method provides correlatedCl ’s, it is nec-
essary to bin the estimates into band powers. Other methods
share, to some extent, this limitation; direct computation of the
power spectrum from a map which necessarily has a cut due to
bright foreground regions, is possible only with a finite band-
width determined by size of the Galactic cut. This was avoided
in the COBE/DMR data with the Gramm-Schmidt orthogonal-
ization of the base functions (G´orski 1994), but the procedure is
impractical for the mega-pixel CMB datasets. For the WMAP
94 GHz channel, our method provides, under reasonable ac-
curacy, around 12–14 independent data points for the first two
Doppler peaks of the CMB power spectrum, and with a gain
factor of 103−104 in CPU time compared to standard methods.

We have also demonstrated that our method retains its
accuracy in the presence of foregrounds and for the realis-
tic/inhomogeneous WMAP noise. The treatment in the pres-
ence of the inhomogeneous noise can also be improved by
removing the pixels with significantly fewer observations.
Furthermore, because the peaks method computes a correla-
tion function,ξν, it is immune to masking. The latter would
allow us to reduce the foregrounds signal by removing from
the CMB maps more isolated regions with higher foreground
contribution.

5. Application to Planck

The Planck satellite2 is due to be launched in early 2007 to
map the all sky CMB distribution with an even finer resolution
than WMAP. It will have two instruments: the low-frequency
instrument (LFI), that operates at three frequency channels be-
tween 30 and 70 GHz, and the high-frequency instrument (HFI)
in six frequency channels between 100 and 857 GHz. The high-
est Planck resolution will be 5 arcmin and the instrument noise
after one year of operations is expected to be around 6–10µK.

2 http://astro.estec.esa.nl/Planck/
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Fig. 12. Radiation power spectrum for the Planck 217 GHz channel:
in the top row we have considered the SCDM model used in WMAP
simulations. In the top panels we follow the conventions of Fig. 4:
solid lines represent the input model, dotted lines the mean of 125
simulations, dashed lines are optimal variance error bars at 1σ and the
shaded areas are the same confidence limit obtained from the simula-
tions. In the bottom row, we show results for the concordanceΛCDM
model foronesingle realization (dotted line). Again, the input model
is given by the solid line and the optimal variance error bars are given,
as before, by the dashed lines.

For this case we simulated the 217 GHz channel, with a
beam of 5.5′ FWHM and anaveragenoise level of 11.4 µK per
beam area. We tested this channel in two different cosmological
models: for consistency, we performed 125 simulations with
the same SCDM model used for WMAP, (top row of Fig. 12,
but we also tested our method with theΛCDM concordance
model, given byΩm = 0.292,ΩΛ = 0.708,Ωb = 0.044 and
h = 0.72, (bottom row of the same figure). We assumed that
the instrumental noise was the sum of two different components
with white noise and 1/ f contributions (see Maino et al. 1999
for a detailed account of systematic effect on the Planck LFI
instrument).

The 1/ f component is characterized by aknee frequency fk,
for which the power spectra of both white and 1/ f noise com-
ponents are equal. If the spin frequencyfs is not much smaller
than the knee frequencyfk, then we can use the fact that the
telescope spends sixty minutes in each ring to simply consider
the average noise pattern for every ring, (Maino et al. 2002). In
other words, we can neglect the noise high frequency compo-
nents present in the same ring, as these will be averaged out.
We model the 1/ f component as a different baseline present
in every scanned ring, giving a pattern of stripes in the noise
map (Janssen et al. 1996). We used the Planck 217 GHz chan-
nel noise model, provided to us by the Max Planck Institute f¨ur
Astrophysik (MPA) at Garching, that includes all systematic
effects. For each simulation, we added a realization of this 1/ f
component to the cosmological and white noise components.
For simplicity we did not include foreground residuals as in the
previous section we have shown to give negligible contribution.
For similar reasons we also did not include point sources.

The maximum multipole to which a beam of 5.5′ FWHM
is sensitive islbeam= 1472. The HEALPix configuration cho-
sen to pixelize the CMB sky as seen by this channel was
Nside = 1024, which yields pixels of 3.5 arcmin. In Fig. 12
we show the results of 500 simulations. As indicated, we have
chosen three threshold levels that have the same number of pix-
els that the threeν’s considered for WMAP. We plot the results
for those thresholds following the conventions of Fig. 4. Note
that, while we obtain the radiation power spectrum from the
same number of pixels as in the case of WMAP, the method
recovers it up tol = 1472, the largest possible multipole de-
termined by the beam size. This could be expected, since the
clustering of peaks and troughs is a statistic particularly sensi-
tive to small angular scales. In the rangeθ ∈ [θbeam,∼ 10◦], or
equivalentlyl ∈ [40, lbeam], our method reconstructs the power
spectrum with an accuracy depending only on the threshold.
The range inl-space probed by the method depends on the res-
olution of each experiment but isindependentof the total num-
ber of peaks used in the analysis.

Using the data from the three set of simulations we can
compute how the band power error bars scale with the thresh-
old ν. In this case, a fit of the formσCl ∝ Nβpeaksto the error bars
of all multipoles gives:β = −0.65±0.011, close to the expected
behaviorσCl ∝ 1/

√
Npeaks. As mentioned before, this scaling

can be used to decide what threshold to choose to achieve a
preselected accuracy. The correlations on theCl ’s were similar
to those of WMAP, of the order of∆l ' 10.

6. Discussion and conclusions

We have presented the detailed implementation of the peaks
KHA method for computing the CMB power spectrum. The
method is based on the correlation properties of peaks on the
CMB and assumes that temperature fluctuations are Gaussian.
We have shown, that the method is robust in the presence of
Galactic (non-Gaussian) foregrounds and realistic WMAP and
Planck noise inhomogeneities.

This method provides a new and independent way to char-
acterize the sub-degree structure of the CMB. Its accuracy is
generally lower than standard methods, but it is remarkably
faster for the range of values ofν required by WMAP and
Planck. This is demonstrated in Fig. 13, where we compare
speed of a standardO(N log N) ∼ N1.61 method with ours.

For WMAP the KHA method should work most optimally
for peak thresholds ofν ∼ 1.8−2.5 or in only (2.5 × 10−3 −
8× 10−5)N2 operations. Applying the method to the simulated
PLANCK sky maps has shown that we could probe, with the
same number of points, the power spectrum out to much higher
multipoles and without significant loss of accuracy. For Planck
mission parameters, the KHA method should work most op-
timally for ν ∼ 2−3, reducing the number of steps down to
∼4 × 10−6N2 operations for thresholds as high asν ∼ 3. This
can potentially lead to a gain of up to∼105 in speed compared
to the existingO(N2) methods.

A significant advantage is that because we use aξν statistic,
the computed CMB spectrum is immune to masking, allowing
to remove high noise and foreground emission parts of the sky.
This also makes straightforward the analysis of particular
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Fig. 13. The value of the peak threshold where the number of opera-
tions in the KHA method equalsN1.61, is plotted as a function of the
number of pixels.

Fig. 14.Radiation power spectrum that would be recovered using the
WMAP second year data with a threshold ofν = 1.6: it was obtained
in only 6× 10−3 N2 operations. The solid line corresponds to the input
model and the dotted line is the raw power spectrum recovered from
one single simulation, prior to binning. The shaded area shows the
extrapolated 1-σ uncertainties of the CMB power spectrum binned
with ∆l = 45.

isolated regions in the sky, enabling its application to future
CMB experiments of very high angular resolution scanning
small celestial patches.

With the scalings ofσCl with ν for both WMAP and Planck
one can estimate the uncertainties of the different multipoles
at still lower peak threshold values. In Fig. 14 we show what
would be the spectrum recovered from the 2 year WMAP data
release using a thresholdν = 1.6. The whole calculation would
require only 6× 10−3 N2 operations.
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Górski, K. M, Hivon, E., & Wandelt, B. D. 1999, Proceedings of

the MPA/ESO Cosmology Conference “Evolution of the Large
Scale Structure”, ed. A. J. Banday, R. S. Sheth, & L. Da Costa,
PrintPartners Ipskamp, NL, 37

Hinshaw, G. 2000, Proceedings of the MPA/ESO/MPE Workshop
“Mining the Sky”, held at Garching, Germany, 31st July - 4th
August 2000, ed. by A. J. Banday, S. Zaroubi, & M. Bartelmann
(Heidelberg: Springer-Verlag), 2001, 447
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